Creating an Affluent Society

Basic Philosophy regarding Creating an Affluent Society

To help realize a mobility society of the future and affluent lifestyles, Toyota is working on a wide variety of initiatives beyond just automotive manufacturing, including building environmentally friendly communities where people connect more freely, developing life-supporting robotics and sponsoring sport events such as the 2020 Tokyo Olympic and Paralympic Games. Through collaboration with governments, local communities, other corporations and the academic world, Toyota is committed to realizing a sustainable society for the greater happiness of all.

[Actual Results for the Previous Fiscal Year and Major Initiatives for the Current Fiscal Year]

<table>
<thead>
<tr>
<th>Major Initiatives during FY2015 (Actual Results)</th>
<th>Major Initiatives during FY2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smart Mobility Society</td>
<td>Smart Mobility Society</td>
</tr>
<tr>
<td>(Connectivity Products and Services)</td>
<td>(Connectivity Products and Services)</td>
</tr>
<tr>
<td>• Promoted utilization of big data information, provided to businesses and local governments and verified usability</td>
<td>• Promote vehicle connectivity by expanding the installation of the on-board Data Communication Module (DCM)</td>
</tr>
<tr>
<td>• Development and commercialization of next-generation traffic systems</td>
<td>• Promote construction and operation of Toyota Big Data Center, and research and utilization of big data for realizing ever-better cars</td>
</tr>
<tr>
<td>• Expanded T-Connect services and functionality</td>
<td>• Expand T-Connect services/functions and smartphone navigation services</td>
</tr>
<tr>
<td>(Future Mobility Society)</td>
<td></td>
</tr>
<tr>
<td>• Managed measures for promoting further utilization in Ha:mo verifications in Toyota City, and improved systems to enhance ease of use</td>
<td>• Expand service and reinforce product appeal through cross-industry collaboration (sharing, communication platform, insurance, etc.)</td>
</tr>
<tr>
<td>• Progressed steadily with verification tests of Ha:mo in Grenoble, France</td>
<td></td>
</tr>
<tr>
<td>• Progressed steadily with verification tests in the Tokyo area</td>
<td></td>
</tr>
<tr>
<td>• Started Ha:mo verification tests in collaboration with tourism services in Okinawa</td>
<td></td>
</tr>
<tr>
<td>Assisted Mobility</td>
<td></td>
</tr>
<tr>
<td>• Fully redesigned Sienta</td>
<td>• Implement partial updates to Hiace and Regius Ace</td>
</tr>
<tr>
<td>• Launched User-Friendly Goods line (Sienta)</td>
<td>• Redesign a wheelchair loading and unloading system (Porte, Spade)</td>
</tr>
<tr>
<td>Biotechnology & Afforestation</td>
<td>Biotechnology & Afforestation</td>
</tr>
<tr>
<td>• Conducted research and development and fostered new businesses, in the fields of biomass utilization, contribution to the agriculture and livestock industries, and greennification (Housaku Keikaku: An agricultural IT management tool)</td>
<td>• Conduct research and development and foster new businesses in the fields of biomass utilization, contribution to the agriculture and livestock industries, and greennification (Housaku Keikaku: An agricultural IT management tool)</td>
</tr>
<tr>
<td>• Promoted initiatives for second year of verifications in the Advanced Model Agricultural Business Formation Trials being conducted by the Ministry of Agriculture, Forestry and Fisheries</td>
<td>• Progress steadily in the final year of the Advanced Model Agricultural Business Formation Trials by the Ministry of Agriculture, Forestry and Fisheries</td>
</tr>
<tr>
<td>• Started joint project with JA Aichi Group</td>
<td>• Began Production Process Efficiency Improvement Project in Agricultural Firms with Ishikawa Prefecture, in addition to JA Aichi Group</td>
</tr>
<tr>
<td>Partner Robots</td>
<td>Partner Robots</td>
</tr>
<tr>
<td>(Rehabilitation Partner Robots)</td>
<td>(Rehabilitation Partner Robots)</td>
</tr>
<tr>
<td>• Fully introduced for clinical research in 34 medical institutions</td>
<td>• Comply with the Pharmaceutical Affairs Law and improve quality and user-friendliness by incorporating feedback from clinical research</td>
</tr>
<tr>
<td>(Human Support Robot (HSR))</td>
<td>(Human Support Robot (HSR))</td>
</tr>
<tr>
<td>• Established the HSR Development Community, lease of HSRs to member institutions, and promoted technological development by sharing research and development outcomes</td>
<td>• Steadily introduce and expand use of the HSR Development Platform in research labs</td>
</tr>
<tr>
<td></td>
<td>Accelerate functional development in the research and development community and initiate social implementation to verify effectiveness</td>
</tr>
</tbody>
</table>
Smart Mobility Society

Basic Philosophy regarding the Smart Mobility Society

Toyota is aiming to help to realize a future smart mobility society where cutting-edge IoT technology is utilized to interconnect cars, people and communities, and everyone feels free, secure, comfortable and excited in all aspects of their lives from car transport to everyday activities.

Toyota is committed to enriching the lives of communities, through initiatives in the four major areas: next-generation telematics that connect people, cooperative ITS that connects cars and road infrastructure, energy management that connects communities, and next-generation urban traffic systems that connect society.

Organization and Structure

The Connected Company and the Business Development Group have been undertaking initiatives to create a smart mobility society in collaboration with other related internal organizations. Conferences have been formed in the fields of Next-generation Telematics, Cooperative ITS, Energy Management, and Next-generation Traffic Systems respectively. Decisions concerning planning and development of various products and services and their commercialization are made regarding individual topics at necessary conferences on all levels ranging from the operation level to the officer level.

Major Initiatives during FY2015

Connected with people

Next-generation Telematics

The vehicle will become a trusted partner through close communication with the driver.

T-Connect Dramatically Enhances People-to-Car Connectivity

In August 2014, Toyota started T-Connect, a next-generation telematics service. Since the launch of G-Book in 2002, we have worked to enhance navigational functions as well as connectivity functions focusing on safety and security, including HELPNET which has been provided via G-BOOK and our security services. In addition to these services, T-Connect offers Agent, which is an advanced interactive interface, and Apps which is a service of downloading applications to be used in the navigation system.
In order to utilize big data globally, Toyota established Toyota Connected, Inc., together with the Microsoft Corporation in the US in April 2016. In the same month, initiatives for developing telematics car insurance services which utilize travel data were also launched in the US jointly with Aioi Nissay Dowa Insurance Co., Ltd.

The Big Data Traffic Information Service contributes to traffic flow improvement and disaster measures

The Big Data Traffic Information Service collects data related to vehicle location, speed and traveling conditions from 4.7 million cars equipped with Toyota’s Telematics services (G-Book, T-Connect, G-Link), accumulates them as big data, processes them into traffic information and statistical data and provides them to relevant parties.

Information such as T-probe traffic information* (Toyota’s proprietary real time traffic information), Route History Maps and traffic volume maps, is provided to local governments and companies for the purpose of improving traffic flow, map information and implementing response measures for traffic in disasters.

* T-probe traffic information: Real-time traffic information includes vehicle location, driving speed and other information acquired through telematics services

Published Route History Maps in the Aftermath of Kumamoto Earthquake

In April 2016, an earthquake broke out in Kumamoto Prefecture with a seismic intensity of 6-7 causing serious damage, including houses collapsing, road cave-ins and upheavals.

To help local people drive safely, Toyota published a Route History Map on the web site immediately after the earthquake. Several days later, data on traffic congestion and restrictions was also uploaded and made available on the same page. Data on traffic congestion was compiled using Toyota’s proprietary T-probe traffic information, and was used as real-time traffic data for local travel, rescue and recovery activities in the disaster stricken areas. Data on the route history was also offered to the Police Agency and ITS Japan.

Global Utilization of Big Data

In order to utilize big data globally, Toyota established Toyota Connected, Inc., together with the Microsoft Corporation in the US in April 2016. In the same month, initiatives for developing telematics car insurance services which utilize travel data were also launched in the US jointly with Aioi Nissay Dowa Insurance Co., Ltd.
Cooperative ITS
Toward the Realization of Toyota’s Ultimate Goal:
Zero Casualties from Traffic Accidents

Overview
Toyota strives to realize its ultimate goal of a society of complete elimination of traffic casualties using the vehicle-to-vehicle and vehicle-to-infrastructure communication technology.

Progress
Adopted ITS Connect, Cooperative Driving Support Systems, in New Models
In the autumn of 2015, Toyota commercialized ITS Connect, cooperative driving support systems which use a dedicated ITS frequency and enhanced the effects of accident reduction.

For details, see Initiatives for Improving Traffic Safety (P12)

Energy Management
Optimizing Energy Use of the Entire Community,
Achieving Eco-friendly Lifestyles with a High Quality of Life

Overview
We are making an effort to connect local communities including homes, convenience stores, and schools, with cars, transportation infrastructure and factories to maintain a good balance between electric power supply and demand, with the goal of optimizing energy consumption in communities and society as a whole. Toyota is also initiating programs to build a hydrogen-based society, one of the key solutions to a challenge of fossil fuel depletion.

Progress
F-Grid, Which Forms a Mutual Support Network of Energy Between the Local Community and Factories, is Entering a Commercialization Phase
Following the Great East Japan Earthquake, Toyota has been working to create new smart communities focusing on factories to solve energy problems and to support the Tohoku region.

F-grid is a system that comprehensively manages the energy inside an industrial park where factories are located with the aim of developing low-carbon, competitive infrastructure. The F-grid Center distributes and stores in an optimum balance the electricity and heat generated by a large-scale gas engine and solar panels for use by nearby participating companies. By making energy consumption visible and averaging out the consumption, energy can be used stably and efficiently throughout the community. F-grid Ohira, Miyagi Limited Liability Partnership (LLP), established in the North Sendai Central Industrial Park (Ohira Village, Kurokawa-gun, Miyagi Prefecture), is in charge of operations and management of the F-grid center, and started supplying power to seven companies sequentially beginning in April 2013. Since October 2015, F-Grid is able to perform emergency support functions during times of disasters and supply electric power to surrounding communities via the electric power company.

Started Initiatives for a Hydrogen-based Society at Kansai International Airport and Keihin Waterfront Area
To achieve a hydrogen-based society, Toyota is working on expanding the use of hydrogen and researching and developing a hydrogen supply chain. Kansai International Airport KIX Project and Keihin Project, which utilize CO₂-free hydrogen made using electric power generated by Hama Wing (a wind-power generation plant in Yokohama City) are examples of ongoing projects working in collaboration with future hydrogen users and many hydrogen related companies.

For details, see Hydrogen-based Society (P72)
Connected with Society

Next-generation Traffic Systems
Building a Stress-free Traffic Environment Where Everyone Can Move around, Exactly as They Wish

Overview

To realize a society in which everyone can travel comfortably, Toyota is working on the commercialization of Ha:mo, a new transport system which optimally combines personal mobility with public transportation.

The vehicles used are ultra-compact EVs, which are environmentally friendly and have a small turning radius. Stations are set up near access points to public transportation systems such as train stations to encourage a short, quick ride from trains or private automobiles. Ha:mo also offers new options for mobility, including utilization for a membership-based car sharing service or for mobility in tourist destinations, mountainous areas and remote islands where public transportation infrastructure is limited.

In April 2015, Toyota started verification tests of a service which combines Times Car PLUS (a car sharing service operated by Park 24 Co., Ltd) and the Ha:mo sharing system. To cater to distinctive needs of residents in the metropolitan area, we operate a one-way (park-and-go) service which gives greater flexibility in renting and returning.

Ultra-compact EV Sharing Verification Project (Grenoble, France)

With its strict environmental regulations, Grenoble has a traffic vision to reduce vehicle usage even if the population continues to grow. Toyota began verification tests of the car sharing service in the city in October 2014. The project is supported by a group of partners who share a common vision for the future of urban mobility, including the government and the electric company.

Personal Mobility Sharing Verification Project in Tokyo in Collaboration with Park24 Co., Ltd.

In April 2015, Toyota started verification tests of a service which combines Times Car PLUS (a car sharing service operated by Park 24 Co., Ltd) and the Ha:mo sharing system. To cater to distinctive needs of residents in the metropolitan area, we operate a one-way (park-and-go) service which gives greater flexibility in renting and returning.

Shared Verification Project for the Condominium Residents in Collaboration with Mitsui Fudosan Co., Ltd. in Tokyo

Toyota started verification tests of a car sharing service in April 2016 in collaboration with Mitsui Fudosan Residential Co., Ltd., for the residents of six condominiums in the Tokyo Bay Area including Tsukuda, Odaiba and Toyosu. We propose a new mode of transportation to an area which is undergoing redevelopment.

Churamai Ha:mo Verification Project (Motobu Peninsula, Okinawa Prefecture)

In collaboration with Motobu Cho Tourist Association and Nakijinson Tourist Association, verification tests for a tourist service using Ha:mo started in January 2016. The service offers a new attraction where ultra-compact EVs are provided to tourists so they can visit tourist spots using routes only ultra-compact vehicles can travel, with a goal to stimulate local tourism while minimizing environmental impact. In July, Nago City and le Village joined the program and new routes were added.

* As of June 2016
To meet the diverse needs of customers, we launched a Wheelchair-adapted Model and Rotating and Tilting Front Passenger’s Seat Model in 2015. Rotating and Tilting Front Passenger’s Seat is the first specification that Toyota introduced. The rotation and (forward) tilting front passenger seat is user-friendly and makes standing up and sitting down easier.

Toyota developed a User-Friendly Goods line for the elderly who are on moderate-to-minor nursing care requirement levels having some degree of physical difficulty but do not need heavy equipment (such as a slope) as in assisted mobility vehicles. These items have been available for the Sienta launched in 2015. New items will be added to the product portfolio which will be applied to a wider range of vehicle models.

Believing that a dedicated wheelchair was necessary to further enhance comfort during transport, Toyota developed Welchair. Its ride-comfort features include less transverse vibration, prevention of the body from sliding forward in the seat and easier seat belt fastening.

Developed Welchair, a Wheelchair Optimized for the Welcab

As Japan enters into a period of a super-aging society, government policy is shifting towards home-based medical treatment and nursing care. As a result, there is growing need for assisted mobility that is easy to use at home. Hoping to help customers’ happy lives, Toyota named the assisted mobility vehicle Welcab. Our goal is to make vehicles that are comfortable and safe as well as simple and easy-to-use, and that gives people with disabilities and the elderly the freedom of mobility and furthermore accommodates the needs and wants of caregivers.

As Japan enters into a period of a super-aging society, government policy is shifting towards home-based medical treatment and nursing care. As a result, there is growing need for assisted mobility that is easy to use at home. Hoping to help customers’ happy lives, Toyota named the assisted mobility vehicle Welcab. Our goal is to make vehicles that are comfortable and safe as well as simple and easy-to-use, and that gives people with disabilities and the elderly the freedom of mobility and furthermore accommodates the needs and wants of caregivers.

Organization and Structure

Toyota is designing and developing Welcab incorporating the five key development points (See right) as well as addressing all market needs. Customers can try out the Welcab at Welcab Stations available at a dealer outlet (229 in Japan) or Heartful Plaza (10 locations in Japan), an exhibition hall equipped with wheelchair-accessible bathrooms and parking spaces for assisted mobility options. Specialist staff including Welcab Consultants is on site to help customers choose a suitable vehicle.

Promote Normalization as an Ordinary Car

Through consumer surveys on Welcab, we received a lot of customer feedback saying that they considered it but did not purchase Welcab because of the “high price”, “there was no need anymore” or “didn’t know how long such a vehicle would be necessary.” To address these fears of customers keeping a car unnecessarily for too long, Toyota has explored ways to make the Welcab into an ordinary car in both cost and functionality. We made options available, such as an additional second row seat to be retrofitted into a wheelchair-adapted model or adding a forward-folding stowable slope, and we were able to reduce production costs using in-line production* for the first time in Japan.

Fully Redesigned Sienta

To meet the diverse needs of customers, we launched a Wheelchair-adapted Model and Rotating and Tilting Front Passenger’s Seat Model in 2015. Rotating and Tilting Front Passenger’s Seat is the first specification that Toyota introduced. The rotation and (forward) tilting front passenger seat is user-friendly and makes standing up and sitting down easier.

Developed Items in User-Friendly Goods Line for Going Out

Toyota developed a User-Friendly Goods line for the elderly who are on moderate-to-minor nursing care requirement levels having some degree of physical difficulty but do not need heavy equipment (such as a slope) as in assisted mobility vehicles. These items have been available for the Sienta launched in 2015. New items will be added to the product portfolio which will be applied to a wider range of vehicle models.

* As of June 30, 2016

* In-line production: Body mounting in the same production line as standard vehicles

* User-Friendly Goods: Options mounted at the dealership

* Major Initiatives during FY2015

[Promote Normalization as an Ordinary Car]

Through consumer surveys on Welcab, we received a lot of customer feedback saying that they considered it but did not purchase Welcab because of the “high price”, “there was no need anymore” or “didn’t know how long such a vehicle would be necessary.” To address these fears of customers keeping a car unnecessarily for too long, Toyota has explored ways to make the Welcab into an ordinary car in both cost and functionality. We made options available, such as an additional second row seat to be retrofitted into a wheelchair-adapted model or adding a forward-folding stowable slope, and we were able to reduce production costs using in-line production* for the first time in Japan.

* In-line production: Body mounting in the same production line as standard vehicles

[Developed Welchair, a Wheelchair Optimized for the Welcab]

Believing that a dedicated wheelchair was necessary to further enhance comfort during transport, Toyota developed Welchair. Its ride-comfort features include less transverse vibration, prevention of the body from sliding forward in the seat and easier seat belt fastening.
Partner Robots

Basic Philosophy regarding Partner Robot Initiatives

Since Toyota’s founding, its corporate philosophy has been to “contribute to the world and to people by enriching society through monozukuri (manufacturing).” Based on this spirit, Toyota has been working to develop human-assisting partner robots to help enrich people’s lives. In order to attain its vision “Mobility for all Joy of Self-reliance,” Toyota will contribute to realizing a sustainable society for the greater happiness of all, by providing partner robots which support independence of the elderly and people with disabilities while reducing burden on caregivers.

Expanded Verification Trials on Public Roads for Winglet, a Personal Mobility Vehicle

In addition to just promote how “Fun to Drive” of Winglet with which the driver shifts his or her body’s center of gravity to drive, Toyota also offers the Winglet Pass program to teach vehicle operation and driving skills as well as important traffic rules and etiquette. Through these efforts, Toyota is building a system for people to drive the Winglet safely and comfortably in pedestrian areas.

Public road verification tests of electric personal assistive mobility devices, such as the Winglet, have been conducted in cities such as Tsukuba and Toyota taking advantage of the benefits of special zones. Now the tests have been expanded throughout Japan and run under the same conditions and requirements since July 2015. The one-year verification test on public roads (sidewalks) in Tokyo Waterfront City that started in March 2016, was designed to let as many people as possible experience first-hand how fun and convenient it is to drive the Winglet, with the goal of building a new mobility society in which the vehicle blends into the community, invigorating local community and stimulating tourism.

Full-scale Introduction of Rehabilitation Partner Robots to Medical Facilities

Toyota, in collaboration with Fujita Health University (Toyoake City, Aichi Prefecture), is developing partner robots which will be provided in the aging society that will accelerate going forward. Since December 2014, 23 Walk Training Assist robot sets and 21 Balance Training Assist robot sets, that provide rehabilitation aid to people with impaired walking or balance due to illness or injury, have been fully introduced in 34* medical institutions in Japan for clinical research purposes. As medical facilities utilize them for their research in rehabilitation, feedback from the clinical site continues to be collected, and the robot is in the final stage before practical application.

* As of June 2016

Comment from Joint Research Partner

Professor Eiichi Saito
Vice-President, Fujita Health University

Fujita Health University and Toyota Motor Corporation began joint research in rehabilitation robots in 2007. Walk Training Assist and Balance Training Assist partner robots were fully introduced for clinical study and are in the final stage of the commercialization process. These robots have been developed, with unconventional ideas leveraging workplace strength through the collaboration between our university, which has one of the largest Rehabilitation Departments in Japan, and Toyota, which excels in manufacturing and long-term research and development. We look to Toyota for workplace strength and technologies in order to commercialize many robots that will be truly useful in medical and nursing care for the upcoming super-aging society.
In 2011, TEMA USA launched Project BLAID to fulfill the mobility needs of blind and visually impaired people. Taking advantage of the advanced image recognition technology and a social environment that encourages collaboration with visually impaired persons in North America, a wearable device has been developed that is worn across the neck and shoulders. Analyzing the images of surrounding areas obtained from the embedded camera, the device identifies doors, stairs, store signage, exits and toilets to notify the user with a built-in speaker or vibration to help enhance the user’s quality of life. From 2016, service monitoring will start using prototypes.

Establish a Community to Promote Technology Development Towards Accelerating Practical Application of the Human Support Robot (HSR)

HSR is the Human Support Robot which supports independent home living for the elderly and people with disabilities. To meet various needs and wants for assistance in everyday life, a platform with a high degree of integrity and a lot of excellent application software are needed. In the autumn of 2015, Toyota released a new robot model and established the HSR Developers’ Community, which works in collaboration with a number of research institutes. Three research labs from 2015 and ten from 2016 joined the Community to develop software and know-how using HSRs loaned to them by Toyota and to share information on the product.

HSR Hackathon 2015

Toyota held the HSR Hackathon (an event in which engineers concentrate on software development with unconventional viewpoints) under the theme of ‘future life with robots’. A total of 38 engineers on eight teams participated in the event. Various ideas for making lives fuller and more fun were proposed and demonstrated using HSR.

Participated in RoboCup Japan Open 2016 Aichi

RoboCup is a competitive event of autonomous mobile robots and was initially started as RoboCup Soccer. RoboCup @ Home is an attempt to apply that technology to everyday life, and contenders compete to demonstrate how well their robots collaborate with humans in domestic tasks, as such in the kitchen or the living room. Toyota offered HSRs to 2 University Teams who competed in RoboCup@Home for RoboCup Japan Open 2016 in Aichi, and the teams did very well, winning 3rd and 4th places. Toyota is as an official RoboCup Japan (RCJ) partner, and is promoting research and widespread adoption of the technology.

Comment from Joint Research Partner

Professor Takayuki Nagai
University of Electro-Communications

We joined the HSR Community because we were excited at the prospect of being able to concentrate on software development by using HSR, a highly stable robot. Our research topic is a robot capable of thinking and working for itself, and HSR’s capabilities are well proven at the RoboCup @Home. I believe the time has finally come for HSR to go out of the closed world of competition and be utilized in the real world as a truly practical robot.

BLAID, a Wearable Device Development Project, Helps Blind and Visually Impaired People

In 2011, TEMA USA launched Project BLAID to fulfill the mobility needs of blind and visually impaired people. Taking advantage of the advanced image recognition technology and a social environment that encourages collaboration with visually impaired persons in North America, a wearable device has been developed that is worn across the neck and shoulders. Analyzing the images of surrounding areas obtained from the embedded camera, the device identifies doors, stairs, store signage, exits and toilets to notify the user with a built-in speaker or vibration to help enhance the user’s quality of life. From 2016, service monitoring will start using prototypes.

* TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA

The device sits on the shoulders and provides assistance for the visually impaired when going out.
To examine the direction of the future automotive fuels, Toyota is developing technology to make biofuel from biomass resources, such as agricultural waste, and energy crops which do not compete with food and feed.

Toyota developed Housaku Keikaku, an agricultural IT management tool, and began providing it to rice-growing agricultural corporations from 2014. The aim is to contribute to increases in agricultural productivity by applying the production control systems and process improvement expertise that Toyota has gained in automobile manufacturing. In February 2015, in collaboration with JA Group Aichi which aims to strengthen agricultural business management, 16 corporations introduced the tool. In 2016, expanding the introduction of the tool to more corporations, we will continue with the trials to further contribute to improving efficiency and quality of rice farming.

Verification Trial of Housaku Keikaku, an Agricultural IT Management Tool to Support Rice Growers

Housaku Keikaku utilizes a cloud computing service and can be easily operated from smartphones and tablet devices. Fermentative production test of ethanol

Development of Technology to Make Bio-Fuels from Biomass Resources

Napier grass is a perennial grass which can be used as raw material for bio-fuel, and it grows profusely even over arid lands. Toyota cultivates this plant on Sumatra in Indonesia. Our goal is to establish a production and procurement system for inexpensive raw materials by growing Napier grass between trees on unused land or on land unsuitable for food cultivation.

Development of a System for Production and Procurement of Bio-Fuels Made From Napier Grass

Fermentative production test of ethanol

Fermentative production test of ethanol

Principles for Agriculture and Livestock Contribution

To contribute to solving global problems such as global warming, energy issues and food shortages, Toyota believes in the need for businesses that contribute to the environment, in new fields in addition to the automotive business. For this purpose, in 1998 we established an organizational structure to support research and development and commercialization of such businesses and have been carrying out initiatives in various fields under the three Visions below:

Vision

- Contribute to the global natural environment through new business by developing excellent biotechnologies and afforestation-related technologies
- Develop resource recycling-based businesses in response to problems such as food shortages; and air and water pollution
- Develop afforestation businesses that contribute to the environment in response to problems such as global warming and the destruction of forests

Research and Development and Business Fields

We are conducting research and development and working to create new business in the fields of biomass utilization, contribution to the agriculture and livestock industries and greenification and afforestation.

Major Initiatives during FY2015

Biomass Utilization

Example of a green walls

Fermentative production test of ethanol

Housaku Keikaku utilizes a cloud computing service and can be easily operated from smartphones and tablet devices.

Loaded with functions which help boost efficiency and quality of farming, such as automatically generating daily work plans and using centralized management to monitor progress in farming activities.

Contribution to Agricultural and Livestock Production

Greenification Business with the Goal of Easing of the Urban Heat-Island Effect

Toyota Roof Garden Co., Ltd. was established in 2001 as a distribution company to sell greenification products developed by Toyota. Currently, its main business activities are as follows:

- Special green construction of rooftops, walls, and parking areas and sale of materials
- Sale of easy-care slow-growth Zoysia Grass (TM9)
- Sale of irrigation system using year-round irrigation controllers

Example of a green walls
Competing in sports brings about “Courage” and “Inspiration.” The Olympic & Paralympic Games possess a “Power” that enriches people and society through various activities that are centered on sports. Toyota believes strongly in the vision and philosophy that the Olympic & Paralympic Games strive to achieve, and entered into a contract as “The Olympic Partner (TOP)” with the International Olympic Committee (IOC) in March 2015. Toyota also concluded a contract as a “Worldwide Paralympic Partner” with the International Paralympic Committee (IPC) in November of the same year. As a partner of the Games, which provide sustainable mobility value through various activities, we would like to help “Achieve ever better, peaceful and equal world.”

In addition, Toyota entered into an agreement as a “National Partner” with the Special Olympics Nippon Foundation (SON) in January 2016. We shall continue to provide support for SON activities and national tournaments.

[Major Initiatives during FY2015]

Olympic & Paralympic Games initiative

The terms of the agreement as “The Olympic Partner (TOP)” for the IOC and as a “Worldwide Paralympic Partner” are valid until 2024, which include the 2020 Tokyo Games. Toyota has put forth three slogans that encapsulate the vision during this sponsorship: “Ever Better MOBILITY FOR ALL,” “Ever Better SOCIETY” and “Ever Better TOYOTA.” We will show off the advantages of mobility, for example, by providing Toyota vehicles for the Games, and we will work towards creating an affluent society through programs contributing social issues, supporting sports and other activities.

Special Olympics initiative

The Special Olympics (SO) is an international sports organization that provides sports training and holds competitions that gives people with intellectual disabilities opportunities to demonstrate their abilities. The affiliates of Toyota in the U.S. have been an active partner since 1986, and they became an official partner of the Special Olympics World Games in 2015. In addition, we have continued to develop activities in other regions, with other overseas affiliates also providing different avenues of support, such as by providing vehicles and volunteers for the Games. In Japan, Toyota concluded an agreement with SON becoming a “National Partner” in January 2016. We will continue to show our support for national programs, events and competitions.

Comments from our partner

After 20 years since its inception, SON entered a new stage and began to develop “Unified Sports,” an initiative of using sports so that everyone can participate, and ultimately aiming to achieve a society of mutual respect.

Unified sports provide a venue to form teams made up of persons with and without intellectual disabilities in order to compete together. SON was able to form a partnership with TOYOTA, which believes in the power of sports, providing support for sport activities both inside and outside the company. I am glad because the SO movement will most certainly continue to grow.

* Unified sports: Provides a venue for training and competitions forming teams with athletes who have intellectual disabilities and partnering them with unimpaired individuals of similar age and competition ability. We are trying to increase the number of opportunities for athletes and their partners to participate in sports.
Promoting various sports, from company teams to lessons for children

Toyota is working to help create affluent communities by adopting initiatives that promote various sports.

Since our founding in 1937, Toyota has focused particularly on company sports teams. The image of players competing, including the challenge, teamwork and never quitting, embodies the spirit that Toyota holds so dear. The image of coworkers working hard together helps raise the work ethic and liven up the workplace.

There are currently 35 athletic clubs and teams. Athletes are able to balance their activities with work, while often showing great achievement.

In addition, Toyota also supports sports in communities, such as lessons and clubs for children. Part of this support, which was started in August of 2015, also includes a “Give back program,” that “gives back to all the people who have helped support us.”